skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Selvan, Raghavendra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a deep learning algorithm, DeepStruc, that can solve a simple nanoparticle structure directly from an experimental Pair Distribution Function (PDF) by using a conditional variational autoencoder. 
    more » « less
  2. Abstract Characterization of material structure with X-ray or neutron scattering using e.g. Pair Distribution Function (PDF) analysis most often rely on refining a structure model against an experimental dataset. However, identifying a suitable model is often a bottleneck. Recently, automated approaches have made it possible to test thousands of models for each dataset, but these methods are computationally expensive and analysing the output, i.e. extracting structural information from the resulting fits in a meaningful way, is challenging. OurMachineLearning basedMotifExtractor (ML-MotEx) trains an ML algorithm on thousands of fits, and uses SHAP (SHapley Additive exPlanation) values to identify which model features are important for the fit quality. We use the method for 4 different chemical systems, including disordered nanomaterials and clusters. ML-MotEx opens for a type of modelling where each feature in a model is assigned an importance value for the fit quality based on explainable ML. 
    more » « less
  3. null (Ed.)
    The development of new nanomaterials for energy technologies is dependent on understanding the intricate relation between material properties and atomic structure. It is, therefore, crucial to be able to routinely characterise the atomic structure in nanomaterials, and a promising method for this task is Pair Distribution Function (PDF) analysis. The PDF can be obtained through Fourier transformation of x-ray total scattering data, and represents a histogram of all interatomic distances in the sample. Going from the distance information in the PDF to a chemical structure is an unassigned distance geometry problem (uDGP), and solving this is often the bottleneck in nanostructure analysis. In this work, we propose to use a Conditional Variational Autoencoder (CVAE) to automatically solve the uDGP to obtain valid chemical structures from PDFs. We use a simple model system of hypothetical mono-metallic nanoparticles containing up to 100 atoms in the face centered cubic (FCC) structure as a proof of concept. The model is trained to predict the assigned distance matrix (aDM) from a simulated PDF of the structure as the conditional input. We introduce a novel representation of structures by projecting them inside a unit sphere and adding additional anchor points or satellites to help in the reconstruction of the chemical structure. The performance of the CVAE model is compared to a Deterministic Autoencoder (DAE) showing that both models are able to solve the uDGP reasonably well. We further show that the CVAE learns a structured and meaningful latent embedding space which can be used to predict new chemical structures. 
    more » « less